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Abstract. Modern cyber threats demand defense strategies that are
adaptive, risk-aware, and capable of misdirecting adversaries in real time.
Traditional static deception systems lack the flexibility to respond to
evolving attack patterns and changing mission priorities. To address this,
we introduce a framework for risk-aware adaptive cyber deception as-
sisted by Large Language Models. The architecture integrates dynamic
risk assessment, AI-assisted deception strategy generation, and modu-
lar deployment mechanisms. At its core, the Decision and Policy Engine
uses an LLM-driven agent to interpret MITRE CAPEC-aligned threat
intelligence and generate semantically rich deception recommendations.
These are then translated into executable deception playbooks by the
Dynamic Cyber Deception module, which manages tactic selection and
deployment. The framework includes a feedback loop where telemetry
and mission impact assessments inform ongoing refinement of deception
strategies, enabling mission-aware adaptation over time. This work lays
a foundation for the next generation of intelligent cyber defense systems
that combine structured risk models with language-model reasoning to
support resilient, adaptive, and context-driven deception capabilities.

Keywords: AI-driven Cyber Deception · Dynamic Risk Assessment ·
Common Attack Pattern Enumeration and Classification· Deception Scheme
· Adaptive Deception Playbooks

1 Introduction

Modern cyber-attacks are increasingly sophisticated, making it harder for orga-
nizations to defend against them using traditional security mechanisms. Static
defences, like firewalls and antivirus software, are no longer enough to keep pace
with the rapidly changing threat landscape. Attackers constantly adapt their
techniques, leaving defenders struggling to identify and mitigate new threats
quickly. To counter this, security systems must become more dynamic, intelli-
gent, and proactive.
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Dynamic Risk Assessment (DRA) provides a flexible and responsive approach
to assessing cybersecurity risks by continuously updating threat probabilities and
asset vulnerabilities based on real-time data [5]. Rather than depending solely on
pre-defined rules or historical attack patterns, DRA techniques leverage proba-
bilistic models like Bayesian Networks to assess the current threat landscape for
the target environment. These models integrate internal data, such as network
topologies and deployed assets, with external threat intelligence, like vulnerabil-
ity databases and exploit prediction scores. In particular, public resources such
as the Common Vulnerabilities and Exposures (CVE) catalog, the National Vul-
nerability Database (NVD), the Common Weakness Enumeration (CWE), and
the Common Attack Pattern Enumeration and Classification (CAPEC) offer
structured information about known vulnerabilities, software weaknesses, and
attacker behaviours. By combining these sources, dynamic risk models deliver
up-to-date assessments of which systems are most at risk at any given time,
enabling more informed and adaptive decision-making.

Cyber deception, on the other hand, offers another proactive defence strategy
by deliberately creating and managing deceptive elements such as honeypots,
honeytokens, decoy applications, and fake data [12]. The goal of deception is to
mislead and confuse attackers, delay their progress, and gather intelligence about
their methods. Effective cyber deception increases the attacker’s workload and
uncertainty, making successful exploitation more difficult and costly. However, in
many current systems, deception assets are deployed statically, without adapting
to the evolving risk environment, and thus reducing their potential impact.

Cyber deception has the potential to contribute to the full spectrum of cy-
berspace operations (from purely Defence to Offense), especially in proactive and
reactive defence against sophisticated cyber threats. In this paper, we utilise as-
pects of the taxonomy developed by Lopez et al. [4], and more specifically the
defined tactics and techniques, and provide an enhanced set of categories for the
deception mechanisms.

Their used AI-driven framework spans all defence phases: prevention, detec-
tion, reaction, and forensics, unlike previous limited-scope approaches. AI, espe-
cially Machine Learning and Deep Learning, is underutilized in Cyber Deception
despite its potential to enhance deception adaptability and precision from Cy-
bersecurity to Cyber Defence contexts. There are still key challenges to take into
account, such as the absence of standardized evaluation metrics, limited use of
multi-technique deception, insufficient attention to stealth and offensive tactics
and the configuration of the underlying network infrastructure [11]. In this paper
we adopt a more granular categorisation of cyber deception mechanisms than
the one proposed in [4], comprising the following categories:

– Detect: this type of deception is designed to spot attacker early in the re-
connaissance phase. It is used as early warning systems.

– Mislead (or misdirect): the goal is to trick attackers into going the wrong
way. It is a manoeuvre in cyberspace for diverting the attacker.

– Engage (or interact): the goal is to prolong the interaction with the adversary
to collect valuable intelligence.
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– Respond: This type of deception aims to project power in cyberspace (offen-
sive operations).

While dynamic risk assessment and cyber deception have each been studied
extensively, existing approaches typically treat them as separate efforts. Risk
models are often used to prioritize patches or firewall rules, while deception
strategies are deployed independently, based on general assumptions about at-
tacker behavior. There is a critical need for a unified methodology that uses
dynamic, real-time risk insights to formulate and drive an organization’s cyber
deception strategy.

In this paper, we propose a novel methodology that connects dynamic risk
assessment with the strategic planning and implementation of cyber deception.
Our framework analyzes the results of continuous risk assessment to identify
high-risk scenarios — situations where specific vulnerabilities, threat actors, or
attack paths present the greatest danger. Based on these high-risk scenarios,
we guide the selection and deployment of appropriate deception mechanisms,
tailoring the deceptive environment to the current threat landscape. This creates
a more responsive, intelligent defence posture that evolves as risks change over
time.

The main contributions of this paper are:

– A novel adaptive cyber defence framework that unifies Dynamic Risk As-
sessment (DRA) with context-aware cyber deception to enable dynamic,
mission-aligned defensive actions.

– A methodology for the formulation of cyber deception strategies by lever-
aging real-time high-risk scenario analysis combined with Large Language
Models (LLMs) and specialised prompt engineering.

– A modular architecture for the selection, orchestration, and adaptive deploy-
ment of deception mechanisms, integrating semantic deception playbooks
and dynamic feedback loops.

– An operational pipeline that links asset-level risk probabilities, CAPEC-
based threat patterns, and deception scheme generation into a closed-loop,
mission-driven cyber defense system.

The rest of this paper is structured as follows. Section 2 reviews related work.
Section 3 presents our proposed methodology. Sections 4 and 5 conclude with a
discussion of future work.

2 Related work

Recent research has increasingly focused on proactive cyber defence approaches,
particularly dynamic risk assessment and deception and the combination of these
two has started attracting the research community.

Sengupta et al. [22] survey Moving Target Defence (MTD) techniques for
network security, categorizing them based on what, when, and how movement
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occurs. They highlight the role of artificial intelligence and SDN/NFV technolo-
gies in enabling dynamic defences but do not directly integrate dynamic risk
models with deception planning.

Li et al. [16] propose an optimal defensive deception framework for container-
based cloud environments using Deep Reinforcement Learning (DRL). Their
work focuses on adaptively deploying decoys based on system dynamics, but
emphasizes placement optimization rather than a systematic methodology link-
ing dynamic risk insights to broader deception strategy formulation.

De Faveri et al. [8] develop a multi-paradigm modeling approach to incor-
porate deception tactics into software design processes. Although this supports
early-stage security engineering, it lacks a connection to dynamic operational
risk updates or runtime deception adaptation.

Al-Shaer et al. [11] introduce the notion of autonomous cyber deception using
dynamic decision-making frameworks, deep learning, and HoneyThings. Their
work envisions automated deception, but focuses primarily on generating decep-
tive artifacts rather than structuring deception strategies based on evolving risk
profiles.

Wang et al. [23] design a proactive deception decision-making model using
Bayesian attack graphs and Stackelberg games to optimize honeypoint place-
ment. While they integrate dynamic attack path analysis with deception de-
ployment, their approach concentrates mainly on optimizing decoy allocation
rather than developing deception strategies at the scenario level.

Huang and Zhu [10] present a multi-stage dynamic Bayesian game model to
counter Advanced Persistent Threats (APTs) in cyber-physical systems. Their
framework captures stealthy attacker-defender interactions, incorporating proac-
tive defence and deception, but does not propose an explicit methodology for
translating dynamic risk evaluation into deception planning.

In contrast to these prior efforts, our work introduces a novel methodology
that systematically links dynamic risk assessment outputs to the formulation
and implementation of an organization’s cyber deception strategy. By identifying
high-risk scenarios in real time, our framework leverages a Large Language Model
(LLM) to assist in generating tailored deception strategies that dynamically align
deception mechanisms with the current threat landscape. This integration of
dynamic risk-driven reasoning, LLM-assisted strategy generation, and scenario-
specific deception deployment represents a significant advancement over prior
approaches that treat risk modeling and deception independently or statically.

3 Proposed Framework

Figure 1 depicts the proposed framework following a modular architecture where
the various modules must interact in a sequential order. The framework operates
as a closed-loop system linking real-time risk assessment to deception planning
and deployment. The Information Collection and DRA modules identify high-
risk assets and associated CAPEC attack patterns. The Decision and Policy
Engine (DPE) interprets these CAPECs using an LLM-based specialist agent,
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producing tailored deception strategies structured as Deception Strategy Re-
ports.

These strategies are then operationalized by the Dynamic Cyber Decep-
tion (DCD) module through structured deception playbooks, where each recom-
mended technique is mapped to a corresponding deception tactic based on its
category (Detection, Misdirection, Engagement, or Response) using a predefined
association (as shown in Figure 2). This ensures that high-level strategic objec-
tives are consistently translated into actionable technical deployments within the
playbooks.

Continuous telemetry feedback informs both the Mission Impact Assessment
(MIA) and future refinement of deception schemes, ensuring that the defense
posture remains contextually relevant, adaptive, and aligned with mission ob-
jectives. The modular architecture enables flexibility, human-in-the-loop oper-
ation during early stages, and supports incremental evolution toward full AI-
orchestrated cyber deception.

3.1 Information Collection

Building on the principles of dynamic risk assessment, the Information Collection
module systematically aggregates environment-specific data, including Common
Platform Enumeration (CPE) identifiers, Common Vulnerabilities and Expo-
sures (CVE) vulnerabilities, and Exploit Prediction Scoring System (EPSS) ex-
ploit likelihood scores, to inform targeted cyber deception strategies. The model’s
operation begins with the identification of all relevant assets within the target
environment. For each identified asset, the model determines the correspond-
ing CPEs, which are then matched against the National Vulnerability Database
(NVD) [2] to extract associated vulnerability data in the form of CVE identifiers.
These CVE-IDs are subsequently used to retrieve EPSS [1] scores. The collected
EPSS scores serve as input to a Bayesian network, which enables the model to
dynamically and proactively estimate the likelihood of exploitation, producing
quantitative threat assessments tailored to the specific environment [6].

In the subsequent phase, the model employs a sequential approach to identify
related Common Weakness Enumerations (CWEs). These CWEs are then used
to detect associated Common Attack Pattern Enumerations and Classifications
(CAPECs). It is important to note that a single CVE may map to multiple
CWEs; in such cases, the model extracts and analyzes each identified CWE.
Similarly, each CWE may be associated with multiple CAPECs, all of which
are collected by our model for further analysis. These identified CAPECs, along
with their associated descriptions, are then provided as input to the Decision
and Policy Engine (DPE) through the DRA module.

3.2 Dynamic Risk Assessment module

The Dynamic Risk Assessment module is responsible for integrating risk-related
information (e.g., threat scores and impact levels) with target-specific contextual
data, such as network topology. This integration is performed using a Bayesian
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Network (BN) to generate quantitative risk estimates tailored to the operational
environment. It is important to note that this approach is one of several possi-
ble methods for Dynamic Risk Assessment, chosen here based on the authors’
previous work and expertise in Bayesian Network modelling.

Bayesian Networks (BNs) have been extensively applied in cybersecurity for
dynamic risk assessment due to their ability to capture probabilistic relation-
ships and update threat estimations as new data becomes available [6,7]. A BN
is defined as N = {G,P}, where G = {V,E} is a Directed Acyclic Graph (DAG)
comprising nodes V and edges E, and P represents conditional probability dis-
tributions [13,14,19].

In our framework, we define two node types: (T) threat nodes, representing
CVEs that may exploit system vulnerabilities, and (A) asset nodes, represent-
ing systems potentially impacted. Rather than relying on subjective expert in-
put [18], we derive conditional probabilities from EPSS scores and CAPEC data,
which are widely accepted in the cybersecurity domain.

Network structure reflects possible attack paths informed by asset connectiv-
ity and threat propagation. To define node logic, we adopt the AND/OR gate
approach from [20]. OR gates are used when any threat can compromise an asset
or an asset can be reached by many connected assets, while AND gates require
multiple conditions, such as threat presence and previous asset compromise. The
conditional probabilities are computed as:

Pd = 1−
n∏

i=1

(
1− P(i)

)
(1)

Pc =

n∏
i=1

P (i) (2)

This setup enables dynamic threat updates and risk calculation using the
standard formulation [15]:

Risk =
∑
i

P (Ai)× S(Ai) (3)

Here, P (Ai) denotes the posterior threat probability for asset Ai, and S(Ai)
is its impact score. Impact levels reflect service degradation (Table 1), though
the model can accommodate alternative schemes (e.g., confidentiality-integrity
and availability (CIA) or financial metrics).

The primary output of the DRA Module is a set of quantitative risk scores
assigned to each asset in the network. These scores capture both the estimated
likelihood of exploitation and the potential impact of a successful attack, sup-
porting informed and prioritized decision-making for cyber defence planning. In
addition, this module also supplies the DPE with the relevant CAPECs identified
by the information collection component.
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Table 1. Impact Scale

Description Impact Score

All services operational 0
Most services operational 1
Some services operational 2
No services operational 3

3.3 Decision and Policy Engine

The Decision and Policy Engine serves as the semantic interpretation layer of
the framework, responsible for transforming structured threat intelligence, par-
ticularly MITRE CAPEC entries identified by the DRA module, into actionable
deception strategies. At the heart of the DPE is an LLM specifically configured
and prompted to act as a “CAPEC Deception Strategy Specialist” [3]. This spe-
cialized agent is designed to analyze a given CAPEC, understand its attack me-
chanics, and generate detailed, creative, and technically precise deception-based
countermeasures.

Workflow and Output Generation Upon receiving a high-risk CAPEC iden-
tifier and its associated context from the DRA module, the DPE invokes its
specialized LLM agent. The agent processes this input based on its predefined
system prompt, which guides it to first identify the specific CAPEC attack pat-
tern, then provide an ultra-concise technical snapshot of the attack and its key
enabling factors to ground the deception strategy, and ultimately generate a
comprehensive Deception Strategy Report. This report is the primary output of
the DPE and directly addresses the need for specific, actionable guidance.

The Deception Strategy Report is structured to include several key compo-
nents, directly aligning with the capabilities of the “CAPEC Deception Strategy
Specialist” agent. It details a set of recommended deception techniques which
are specific deception tools and methods, such as credential honeytokens, fake
vulnerable service honeypots, and deceptive API endpoints, directly relevant to
countering the mechanics of the input CAPEC. This “set” of techniques is gen-
erated by the LLM agent based on its specialized knowledge of deception and
the CAPEC landscape.

Furthermore, for every recommended deception technique, the report pro-
vides clearly defined strategic objectives, such as early detection of reconnais-
sance, misdirection of the attacker towards benign decoys, containment of ma-
licious activity, or collection of attacker TTPs. These objectives are defined by
the LLM agent itself, tailored to the specific CAPEC and the chosen deception
tactic.

The agent also provides implementation guidance, offering practical advice
on the optimal placement of these deception elements within the target environ-
ment (e.g., specific network segments, application layers, configuration files) and
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detailing crucial monitoring requirements (e.g., “alert on any access attempt to
the honeytoken”, “log all traffic interacting with the honeypot IP”).

This guidance forms the strategic basis for the more detailed operational
playbooks. Crucially, the report also establishes the basis for trigger logic; while
the LLM agent does not generate executable Security Information and Event
Management (SIEM) rules or complex alert conditions directly, its specification
of “key monitoring points” and expected attacker interactions provides the nec-
essary information for the subsequent DCD module to establish explicit trigger
logic for high-confidence alerts or automated escalations. For instance, if the
agent suggests monitoring a specific fake credential, the DCD module can then
implement a trigger to alert when that credential is used.

Example Output of the “CAPEC Deception Strategy Specialist” Agent
To illustrate the output, consider an input of CAPEC-126: Path Traversal.
The DPE’s LLM agent might produce a Deception Strategy Report similar to
the following (abbreviated):

### CAPEC Deception Strategy Report

** Attack Pattern :** CAPEC -126: Path Traversal (aka Directory
↪→ Traversal)

** Threat Snapshot :** An attacker manipulates input parameters
↪→ (e.g., in a URL or form field) with sequences like
↪→ ‘../‘ to navigate outside the intended directory and
↪→ access restricted files or directories on the server.

**Key Enabling Factor(s):**
* Insufficient input validation and sanitization of user -

↪→ supplied file paths.
* Web server misconfiguration allowing access beyond the

↪→ web root.

---

** Deception Strategy :**

**1. Technique :** Decoy Directory/File System
* ** Details :** Create a set of directories and files

↪→ within the web server ’s accessible paths that
↪→ mimic sensitive system locations (e.g., ‘/etc/
↪→ passwd -decoy ‘, ‘/var/log/secret_system.log.decoy ‘,
↪→ ‘../ backup_config.ini.decoy ‘). These are not real
↪→ sensitive files but are designed to attract path
↪→ traversal attempts.

* ** Strategic Goal :** Detect and identify attackers
↪→ attempting path traversal by luring them to access
↪→ these specific decoy files/directories.
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↪→ Successful access to a decoy is a high -fidelity
↪→ indicator of malicious intent.

* ** Implementation & Monitoring :**
* Placement: Strategically place links or

↪→ references to these decoys in less obvious
↪→ parts of the web application , or make them
↪→ discoverable if an attacker successfully
↪→ traverses one level up.

* Monitoring: Monitor all access attempts to these
↪→ specific decoy files and directories. Log the
↪→ source IP, timestamp , and the exact path
↪→ requested.

**2. Technique :** Path Traversal Honeypot Listener
* ** Details :** Configure a specific web application

↪→ endpoint or a dedicated lightweight honeypot
↪→ service that intentionally appears vulnerable to
↪→ path traversal. When an attacker attempts to use
↪→ ‘../‘ sequences against this endpoint , instead of
↪→ returning a real file or an error , it logs the
↪→ attempt and can optionally return a fake directory
↪→ listing or a "file" containing a honeytoken.

* ** Strategic Goal :** Actively solicit and capture path
↪→ traversal attempts , gather intelligence on
↪→ attacker TTPs (what files they are looking for),
↪→ and provide early warning of such reconnaissance.

* ** Implementation & Monitoring :**
* Placement: Can be a hidden endpoint on an

↪→ existing web server or a separate low -
↪→ interaction honeypot.

* Monitoring: Log all incoming requests to this
↪→ listener , especially those containing path
↪→ traversal sequences. If a honeytoken is
↪→ returned , monitor for its activation.

---

**Brief Contextual Notes :**
* ** Attacker Objective Hint :** Often used for information

↪→ gathering (e.g., finding configuration files ,
↪→ credentials) or as a precursor to further exploitation
↪→ .

* ** Deception Complexity :** (Technique 1: Simple to
↪→ Moderate), (Technique 2: Moderate)

This structured “Deception Strategy Report” serves as input to the DCD
Module. It is the blueprint for constructing and operationalizing executable de-
ception playbooks. The guidance provided by the DPE ensures that the decep-
tion mechanisms deployed are semantically rich, aligned with specific threats
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(CAPECs), and contribute directly to the strategic objectives of detection, mis-
direction, engagement, or response.

The DPE, powered by a specialized LLM agent acting as a “CAPEC Decep-
tion Strategy Specialist”, transforms structured threat intelligence into dynamic
and semantically rich deception strategies. By interpreting CAPEC data, the
engine generates detailed Deception Strategy Reports (Deception Scheme) that
recommend specific deception techniques, associate them with strategic objec-
tives, and provide implementation and monitoring guidance. This output serves
as the direct input for the DCD module, enabling the creation of context-aware,
risk-aligned deception playbooks tailored to evolving threats and operational
constraints.

3.4 Dynamic Cyber Deception module

The purpose of the Dynamic Cyber Deception module is to execute deception
playbooks based on recommendations provided by the DPE. Acting as a bridge
between AI-driven decision modules and real-time deceptive actions, playbooks
define when and how deception should be activated in response to specific at-
tacker behaviors or risk levels, as well as the intended outcomes, i.e. whether to
detect, mislead, engage, or respond to cyber attackers according to the decep-
tion categories identified in the framework (Fig 1). In authors’ views, the DCD
module follows a human-based implementation where operators are responsible
for interpreting high-level deception schemes/deception strategy reports, map-
ping tactics to executable techniques, deploying deception components, config-
uring monitoring, and managing the full lifecycle of each playbook. This manual
workflow emphasizes the need for a structured transition plan toward automated
execution in the future. A deception playbook is not merely an execution recipe,
but a structured operational plan that translates the high-level deception scheme
(from the DPE) into: tactical intent (why it is being used), technical deployment
(how it is executed) and expected effects (what it is supposed to achieve).

The intented outcome is not inferred post-deployment but is embedded in
the playbook structure to ensure consistent, goal-driven deception planning and
evaluation. It instantiates both a “classical approach” - comprising, for instance,
honey-X and MTD techniques - and an “AI-based approach” of adaptive and
cognitive deception. Both technologies can coexist in a hybrid deception archi-
tecture. Human operators are responsible for interpreting and executing this
specification, which highlights the need for a structured transition to automated
orchestration as system maturity evolves. The DCD module may run immedi-
ate deception via a rapid response path and generates outputs shared with a
feedback loop for continuous improvement. It is the “executor and tuner” of de-
ception based on the input received from previous modules. Here is how the
module can be functionally decomposed into three logical layers containing each
one two submodules and services (as shown in Fig 2) - in a structured way:

– The Interpretation Layer serves as the central coordination of two sub-
modules: playbook interpreter and tactic mapper. The playbook interpreter
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parses DPE inputs, validates deception schema, and instantiates a runtime
deception playbook while the tactic mapper maps the deception category
(e.g., misleading) to a corresponding tactic (e.g., decoying or camouflage)
using a predefined lookup table. The category-to-tactic mapping is a seman-
tic grounding mechanism that refines high-level deception objectives into
specific tactical intents. The original set of deception tactics proposed in the
CYDEC framework [4] was designed to capture high-level cognitive strate-
gies applicable to both offensive and defensive deception contexts. While
valuable as a unifying taxonomy of intent, these tactics were not explicitly
structured for implementation within adaptive, mission-aware cyber defence
systems. In this work, the authors reinterpret and expand these tactics to
align with four operationally distinct categories of deception (Fig 2), tar-
geting detection, misdirection, engagement, or response and thus, creating a
practical bridge between strategic intent and automated execution. This ex-
pansion not only enhances the applicability of existing taxonomies but also
provides the foundation for integrating deception planning into AI-driven
decision systems and dynamic orchestration modules.

– The Selection and Orchestration Layer comprises two submodules: a
Technique selector and a Deception executor. The first submodule, analyses
the list of techniques provided by the DPE and selects the one that best
implements the mapped tactic (based on priority, resource availability, or
historical effectiveness). The latter submodule deploys the selected decep-
tion technique using orchestration tools (e.g., honeypot deployment, DNS
manipulation, AI-generated content).

– The Runtime Management Layer manages telemetry setup, tracks at-
tacker behaviour, and governs the playbook lifecycle including escalation or
shutdown. These functions are operationalised by a Monitoring Handler and
an Escalation and Lifecycle Manager.

In essence, playbooks incorporate trigger logic, placement and duration pa-
rameters, telemetry hooks, and escalation rules as defined by the LLM-generated
scheme. This alignment ensures that each deception instance is semantically con-
sistent, mission-relevant, and operationally effective within the adaptive decep-
tion loop. Unlike SODA [21], which synthesizes deception playbooks through
offline malware analysis, the proposed model constructs deception playbooks
based on semantic interpretations of elements provided by an LLM-driven DPE.
SODA’s playbooks are primarily malware-specific and centered around ploy-
level API manipulation aligned with static deception strategies (e.g., FakeSuc-
cess, FakeFailure), whereas our approach defines playbooks as modular execution
plans guided by high-level strategic objectives (e.g., detection, misdirection, en-
gagement, response), linked to mapped tactics and techniques.

Together, the above-mentioned submodules form the active operational layer
of the dynamic deception architecture, seamlessly integrating deception deploy-
ment with situational understanding. In the authors’ opinion, implementation of
the DCD module will include human oversight in key subcomponents. Specifi-
cally, the Technique Selector and Deception Executor submodules are envisaged
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Fig. 2. Mapping of CYDEC tactics [4] with deception categories

to be operated manually or semi-automatically by human analysts during the
proof-of-concept phase. This design choice ensures flexibility and interpretabil-
ity in the early stages of system deployment, allowing expert judgment to guide
the selection of deception techniques and validate operational execution in com-
plex environments [17]. Furthermore, this human-in-the-loop approach enables
iterative refinement of category-tactic-technique mappings and supports the safe
evaluation of deception strategies prior to some type of possible automation. In
production settings, these submodules are expected to evolve into policy-driven,
AI-assisted orchestration services, but their manual control at this stage reflects
a balance between experimental rigor, operational safety, and the incremental
maturity of deception technology.

3.5 Feedback and improvement of the model

The Feedback Processor serves as a critical analytical component within the de-
ception architecture, transforming raw telemetry and attacker interaction data
into actionable insights for system adaptation and learning. It continuously in-
gests data streams from the Monitoring Handler, including command sequences,
engagement durations, and deception avoidance attempts. Utilizing advanced an-
alytics, the processor assesses the effectiveness of deception activities, measuring
indicators such as attacker persistence, confusion, and eventual disengagement.
This analysis produces deception performance metrics that are structured and
prioritized according to their relevance to ongoing operations and overall mis-
sion objectives. These metrics are then fed both to the MIA module, where they
contribute to dynamic impact evaluation, and to the DPE module, facilitating
continuous refinement of deception playbooks and orchestration policies based
on empirical outcomes. Additionally, it has the potential of executing an adap-
tive tuning based on dynamic risk and MIA [9] - the latter being an external
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Table 2. Functional overview of Deception module subcomponents

Submodule Purpose

Playbook Interpreter Parses DPE inputs, validates schema, and instantiates a runtime
deception playbook

Tactic Mapper Maps the deception category to a corresponding tactic using a
lookup table

Technique Selector From the list of techniques provided by the DPE, selects the
one that best implements the mapped tactic (based on priority,
resource availability, or historical effectiveness)

Deception Executor Deploys the selected deception technique using orchestration
tools (e.g., honeypot deployment, DNS manipulation, AI-
generated content)

Monitoring Handler Installs required telemetry hooks as defined in the playbook and
routes data to the Feedback Processor and MIA modules

Escalation and Life-
cycle Manager

Monitors playbook triggers and conditions for escalation, time-
out, or deactivation, and coordinates any runtime transitions

source of information. In a cyber situational awareness capability, MIA evalu-
ates how ongoing cyber events affect mission-critical capabilities. In doing so, the
Feedback Processor closes the deception loop, ensuring that future engagements
benefit from accumulated knowledge and tactical optimization.

4 Discussion

In the implementation of the framework provided in Fig. 1, some shortfalls may
appear which are worth analysing. As mentioned in section 3, LLM outputs
map directly to deception categories (detect, mislead, engage, respond). Decep-
tion tactics associated with above-mentioned categories could be predictable or
rigidly tied to CAPEC mappings to cope with a rapid adaption of cyber attack-
ers’s techniques. Therefore, Deception playbooks need to evolve dynamically,
not just trigger based on category. Another possible limitation is that the DCD
module produces attacker reactions which are captured to feed a MIA. MIA con-
sumes information from deception activities and attacker reactions to provide
its measurements. The proposed future work for the proposed architecture shall
show how MIA influences upstream deception or LLM recommendations. DPE
module is not directly fed with real-time attacker response data and it would af-
fect the ability for the LLM-driven mechanism to refine recommendations based
on deception effectiveness. Additionally, the modular approach and involvement
of LLMs and agents may introduce processing latency. High-speed attacks (e.g.
ransomware, data exfiltration) require faster LLM-based decision and deception
deployment or at least, the possibility to find a compromise between effectiveness
and speed. Moreover, explicit adversarial resistance is envisaged as a future work.
Attackers may attempt to detect and evade LLM-driven deception systems. LLM
and deception mechanisms may be vulnerable to: adversarial prompting, decep-
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tion environment fingerprinting, or abuse of response deception to gain infor-
mation. Successfully fingerprinting deception environments allows adversaries to
bypass traps, reducing the effectiveness of cyber deception strategies.

The implementation of the DCD module requires careful orchestration of
modular subcomponents capable of deploying and adapting deception strategies
with human intervention in alignment with evolving threat conditions and mis-
sion priorities. Central to this is the integration of deception playbooks, which
standardize the execution of deception schemes, ranging from detection and mis-
direction to environment manipulation and response deception, based on struc-
tured outputs from the DPE. Key aspects include the use of containerized mi-
croservices for flexible deployment, real-time telemetry collection for attacker in-
teraction analysis, and a feedback mechanism to inform future deception strate-
gies. At the framework level, seamless interoperability between the the DRA
process, and the DPE and DCD modules is critical to ensure context-aware and
risk-aligned defensive actions. To ensure a coherent and logically structured op-
erationalization of the framework, overlaps or inconsistencies between the inputs
and outputs of the DPE and the DCD modules must be minimized. Clear inter-
face definitions and modular boundaries are essential to maintain consistency,
traceability, and semantic alignment across the system components. The defi-
nition of deception intensity within the DCD module must consider both the
availability of operational resources and the assessed threat level. This intensity
should be proportionally aligned with the threat actor’s motivation and skills,
enabling a calibrated response that avoids unnecessary system overhead. Fur-
thermore, maintaining low-latency communication, ensuring scalability across
distributed environments, and safeguarding against deception environment fin-
gerprinting are essential to achieving a resilient, adaptive, and mission-aware
cyber defence capability.

5 Conclusions

This work introduces a novel cyber defence framework that integrates DRA with
AI-assisted cyber deception, aiming to enhance mission resilience through adap-
tive, risk-aligned defensive actions. Leveraging Large Language Models to inter-
pret CAPEC-aligned threat intelligence, the system generates semantically rich
deception strategies that guide deployment of structured deception playbooks.

The proposed framework establishes a modular, closed-loop architecture link-
ing risk analysis, strategic reasoning, deception orchestration, and feedback-
driven adaptation. While the current work focuses on the architectural foun-
dation, future research will focus on the detailed development and operational
refinement of the framework components, including the integration of feedback
mechanisms, advanced deception environment and playbooks management, and
optimisation of AI-driven strategy generation. Before DCD deployment of play-
books, alternative tactics and techniques analysis can be effectively supported
through controlled testing environments or cyber ranges, allowing empirical eval-
uation of deception strategies and identification of the most effective solution for
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a given threat scenario. By bridging dynamic risk evaluation with proactive,
context-aware cyber deception, this framework lays the groundwork for the next
generation of intelligent and mission-driven cyber defence systems where cyber
deception is an integral part of it.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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